185 research outputs found

    A Novel Hybrid K-Means and GMM Machine Learning Model for Breast Cancer Detection

    Get PDF
    Breast cancer is the second leading cause of death among a large number of women worldwide. It may be challenging for radiologists to diagnose and treat breast cancer. Consequently, primary care improves disease prevention and death. Early detection increases treatment options and saves life, which is the major target of this research. This research indicates the versatility of the methodology by integrating contemporary segmentation approaches with machine learning methods, which are developing areas of research. In the pre-processing process, an adaptive median filter is utilized for noise removal, enhancement of image quality, conservation of edges, and smoothing. This research makes a significant contribution by proposing a new parameter for evaluating K-means and a Gaussian mixture model (GMM) performance. A hybrid combination of segmentation and detection was applied to breast cancer. The proposed technique is significant for classifying benign and malignant tumors. The simulated results are discussed and evaluated to determine the competence of this method for the early diagnosis of breast cancer. This method allows medical experts to recognize breast cancer at a faster rate and provide higher accuracy. An ANOVA test was used to determine the multi-variant analysis and prediction rate for the proposed method

    Privacy Preserving Attribute-Focused Anonymization Scheme for Healthcare Data Publishing

    Get PDF
    Advancements in Industry 4.0 brought tremendous improvements in the healthcare sector, such as better quality of treatment, enhanced communication, remote monitoring, and reduced cost. Sharing healthcare data with healthcare providers is crucial for harnessing the benefits of such improvements. In general, healthcare data holds sensitive information about individuals. Hence, sharing such data is challenging because of various security and privacy issues. According to privacy regulations and ethical requirements, it is essential to preserve the privacy of patients before sharing data for medical research. State-of-the-art literature on privacy preserving studies either uses cryptographic approaches to protect the privacy or uses anonymizing techniques regardless of the type of attributes, this results in poor protection and data utility. In this paper, we propose an attribute-focused privacy preserving data publishing scheme. The proposed scheme is two-fold, comprising a fixed-interval approach to protect numerical attributes and an improved l -diverse slicing approach to protect the categorical and sensitive attributes. In the fixed-interval approach, the original values of the healthcare data are replaced with an equivalent computed value. The improved l -diverse slicing approach partitions the data both horizontally and vertically to avoid privacy leaks. Extensive experiments with real-world datasets are conducted to evaluate the performance of the proposed scheme. The classification models built on anonymized dataset yields approximately 13% better accuracy than benchmarked algorithms. Experimental analyses show that the average information loss which is measured by normalized certainty penalty (NCP) is reduced by 12% compared to similar approaches. The attribute focused scheme not only provides data utility but also prevents the data from membership disclosures, attribute disclosures, and identity disclosures

    IoT Based Virtual Reality Game for Physio-therapeutic Patients

    Get PDF
    Biofeedback therapy trains the patient to control voluntarily the involuntary process of their body. This non-invasive and non-drug treatment is also used as a means to rehabilitate the physical impairments that may follow a stroke, a traumatic brain injury or even in neurological aspects within occupational therapy. The idea behind this study is based on using immersive gaming as a tool for physical rehabilitation that combines the idea of biofeedback and physical computing to get a patient emotionally involved in a game that requires them to do the exercises in order to interact with the game. This game is aimed towards addressing the basic treatment for ‘Frozen Shoulder’. In this work, the physical motions are captured by the wearable ultrasonic sensor attached temporarily to the various limbs of the patient. The data received from the sensors are then sent to the game via serial wireless communication. There are two main aspects to this study: motion capturing and game design. The current status of the application is a single ultrasonic detector. The experimental result shows that physio-therapeutic patients are benefited through the IoT based virtual reality game

    A weighted ensemble of regression methods for gross error identification problem.

    Get PDF
    In this study, we proposed a new ensemble method to predict the magnitude of gross errors (GEs) on measurement data obtained from the hydrocarbon and stream processing industries. Our proposed model consists of an ensemble of regressors (EoR) obtained by training different regression algorithms on the training data of measurements and their associated GEs. The predictions of the regressors are aggregated using a weighted combining method to obtain the final GE magnitude prediction. In order to search for optimal weights for combining, we modelled the search problem as an optimisation problem by minimising the difference between GE predictions and corresponding ground truths. We used Genetic Algorithm (GA) to search for the optimal weights associated with each regressor. The experiments were conducted on synthetic measurement data generated from 4 popular systems from the literature. We first conducted experiments in comparing the performances of the proposed ensemble using GA and Particle Swarm Optimisation (PSO), nature-based optimisation algorithms to search for combining weights to show the better performance of the proposed ensemble with GA. We then compared the performance of the proposed ensemble to those of two well-known weighted ensemble methods (Least Square and BEM) and two ensemble methods for regression problems (Random Forest and Gradient Boosting). The experimental results showed that although the proposed ensemble took higher computational time for the training process than those benchmark algorithms, it performed better than them on all experimental datasets

    A comparative study of anomaly detection methods for gross error detection problems.

    Get PDF
    The chemical industry requires highly accurate and reliable measurements to ensure smooth operation and effective monitoring of processing facilities. However, measured data inevitably contains errors from various sources. Traditionally in flow systems, data reconciliation through mass balancing is applied to reduce error by estimating balanced flows. However, this approach can only handle random errors. For non-random errors (called gross errors, GEs) which are caused by measurement bias, instrument failures, or process leaks, among others, this approach would return incorrect results. In recent years, many gross error detection (GED) methods have been proposed by the research community. It is recognised that the basic principle of GED is a special case of the detection of outliers (or anomalies) in data analytics. With the developments of Machine Learning (ML) research, patterns in the data can be discovered to provide effective detection of anomalous instances. In this paper, we present a comprehensive study of the application of ML-based Anomaly Detection methods (ADMs) in the GED context on a number of synthetic datasets and compare the results with several established GED approaches. We also perform data transformation on the measurement data and compare its associated results to the original results, as well as investigate the effects of training size on the detection performance. One class Support Vector Machine outperformed other ADMs and five selected statistical tests for GED on Accuracy, F1 Score, and Overall Power while Interquartile Range (IQR) method obtained the best selectivity outcome among the top 6 AMDs and the five statistical tests. The results indicate that ADMs can potentially be applied to GED problems

    Automated sleep stage classification in sleep apnoea using convolutional neural networks

    Get PDF
    A sleep disorder is a condition that adversely impacts one\u27s ability to sleep well on a regular schedule. It also occurs as a consequence of numerous neurological sicknesses. These types of disorders can be investigated using laboratory-based polysomnography (PSG) signals. The detection of neurological disorders is exact and efficient thanks to the automated monitoring of sleep relegation stages. This automation method publicly presents a flexible deep learning model and machine learning approach utilizing raw electroencephalogram (EEG) signals. The deep learning model is a Deep Convolutional Neural Network (CNN) that analyses invariant time capacities and frequency actualities and collects assessment adaptations. It also captures the inviolate and long brief length setting conditions between the epochs and the degree of sleep stage relegation. This method uses an innovative function to calculate data loss and misclassified errors found while training the network for the sleep stage, considering the restrictions found in the publicly available sleep datasets. It is used in conjunction with machine learning techniques to forecast the best approach for the process. Its effectiveness is determined by using two open-source, public databases available from PhysioNet: two recordings with 5402 epoch counts. The technique used in this approach achieves an accuracy of 90.70%, precision of 90.50%, recall of 92.70%, and F-measure of 90.60%. The proposed method is more significant than existing models like AlexNet, ResNet, VGGNet, and LeNet. The comparative study of the models could be adopted for clinical use and modified based on the requirements

    Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation

    Get PDF
    Accurate and reliable lung nodule segmentation in computed tomography (CT) images is required for early diagnosis of lung cancer. Some of the difficulties in detecting lung nodules include the various types and shapes of lung nodules, lung nodules near other lung structures, and similar visual aspects. This study proposes a new model named Lung_PAYNet, a pyramidal attention-based architecture, for improved lung nodule segmentation in low-dose CT images. In this architecture, the encoder and decoder are designed using an inverted residual block and swish activation function. It also employs a feature pyramid attention network between the encoder and decoder to extract exact dense features for pixel classification. The proposed architecture was compared to the existing UNet architecture, and the proposed methodology yielded significant results. The proposed model was comprehensively trained and validated using the LIDC-IDRI dataset available in the public domain. The experimental results revealed that the Lung_PAYNet delivered remarkable segmentation with a Dice similarity coefficient of 95.7%, mIOU of 91.75%, sensitivity of 92.57%, and precision of 96.75%

    Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder

    Get PDF
    Magnetic Resonance Imaging (MRI) is useful to provide detailed anatomical information such as images of tissues and organs within the body that are vital for quantitative image analysis. However, typically the MR images acquired lacks adequate resolution because of the constraints such as patients’ comfort and long sampling duration. Processing the low resolution MRI may lead to an incorrect diagnosis. Therefore, there is a need for super resolution techniques to obtain high resolution MRI images. Single image super resolution (SR) is one of the popular techniques to enhance image quality. Reconstruction based SR technique is a category of single image SR that can reconstruct the low resolution MRI images to high resolution images. Inspired by the advanced deep learning based SR techniques, in this paper we propose an autoencoder based MRI image super resolution technique that performs reconstruction of the high resolution MRI images from low resolution MRI images. Experimental results on synthetic and real brain MRI images show that our autoencoder based SR technique surpasses other state-of-the-art techniques in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Information Fidelity Criterion (IFC), and computational time

    High Prevalence of Anorectal Chlamydial Infection in HIV-Infected Men Who Have Sex with Men in Switzerland

    Get PDF
    Human immunodeficiency virus (HIV)-infected men who have sex with men (MSM) were enrolled in an anorectal Chlamydia trachomatis screening study. Anorectal Chlamydia DNA was detected in 16 (10.9%) of 147 men, mainly among asymptomatic patients and patients having >20 sexual partners. These results support routine anorectal Chlamydia screening in HIV-infected MSM who report unprotected anal intercours

    Defective Leukocyte Adhesion and Chemotaxis Contributes to Combined Immunodeficiency in Humans with Autosomal Recessive MST1 Deficiency.

    Get PDF
    PURPOSE: To investigate the clinical and functional aspects of MST1 (STK4) deficiency in a profoundly CD4-lymphopenic kindred with a novel homozygous nonsense mutation in STK4. Although recent studies have described the cellular effects of murine Mst1 deficiency, the phenotype of MST1-deficient human lymphocytes has yet to be fully explored. Patient lymphocytes were therefore investigated in the context of current knowledge of murine Mst1 deficiency. METHODS: Genetic etiology was identified by whole exome sequencing of genomic DNA from two siblings, combined with linkage analysis in the wider family. MST1 protein expression was assessed by immunoblotting. The ability of patient lymphocytes to adhere to ICAM-1 under flow conditions was measured, and transwell assays were used to assess chemotaxis. Chemokine receptor expression was examined by flow cytometry and receptor signalling by immunoblotting. RESULTS: A homozygous nonsense mutation in STK4 (c.442C > T, p.Arg148Stop) was found in the patients, leading to a lack of MST1 protein expression. Patient leukocytes exhibited deficient chemotaxis after stimulation with CXCL11, despite preserved expression of CXCR3. Patient lymphocytes were also unable to bind effectively to immobilised ICAM-1 under flow conditions, in keeping with a failure to develop high affinity binding. CONCLUSION: The observed abnormalities of adhesion and migration imply a profound trafficking defect among human MST1-deficient lymphocytes. By analogy with murine Mst1 deficiency and other defects of leucocyte trafficking, this is likely to contribute to immunodeficiency by impairing key aspects of T-cell development and function such as positive selection in the thymus, thymic egress and immune synapse formation in the periphery.This is thepublished version. It first appeared at http://link.springer.com/article/10.1007%2Fs10875-016-0232-2
    • …
    corecore